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Figure 1: A prime labeling of C4
5,2.
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v = (v1, v2, . . . , vm) each be sequences of vertices, with ui, vi ∈ V (Gi). Then the Gu ,v -
snake is the graph defined by replacing the edge (pi, pi+1) in Pm+1 by the graph Gi, with
ui identified with pi and vi identified with pi+1. We call these vertices fusion points.

If G1
∼= · · · ∼= Gm

∼= G, each of u1, u2, . . . , um correspond to the same vertex u of G
and each of v1, v2, . . . vm correspond to the same vertex v of G, then call the corresponding
Gu ,v -snake uniform. That is, a uniform snake is one in which we replace each edge of the
path with the same graph in the same way. If the graph used in a uniform snake is a
cycle, then it is a uniform cycle snake. As in [1], we denote by Cm

k,q the uniform cycle
snake with m cycles, each of size k, and with q edges in a path between consecutive fusion
points. We may always take q ≤ bk/2c and we shall usually do so; however, sometimes
it is convenient to describe a general construction in such a way that q > bk/2c for some
instances.

A prime labeling of C4
5,2, the uniform cycle snake with four 5-cycles joined at distance 2,

is given in Figure 1. Note that many pairs of adjacent labels are consecutive. Two
consecutive numbers are necessarily coprime and our constructions take advantage of this
by using consecutive labels on adjacent vertices as often as possible.

Theorem 1.1 collects what is known about primality of uniform cycle snakes.

Theorem 1.1 Let m ≥ 1, k ≥ 3 and 1 ≤ q ≤ bk/2c. If k < 5, let p = 1; otherwise let p
be the smallest prime factor of k− 2 when k is odd and the smallest prime factor of k− 3
when k is even. The uniform cycle snake Cm

k,q is prime in the following cases:

• m ≤ 2, [6, reported in [5]; see also [7]],

• q = 1 [8, reported in [5]; see also [2]],

• q = 2, k is odd and m ≤ p [1],

• q = 3, k ≡ 4 (mod 6) and m < p/2 [1],
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Table 1: Existence of prime labelings for uniform cycle snakes with small cycles. An entry
in row q and column k indicates that Cm

k,q is prime for all m, where the entry indicates
the theorem number in the present paper that proves this and/or a reference to a proof
elsewhere.

q\k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 [4] 2.1 4.1 3.3 6.2 6.1 4.2 3.3 · 3.4 · 3.3 · · 4.2 3.3
3 [4], 5.2 3.1 5.1 5.1 4.4 5.1 5.2 3.1 · · · 5.1 · 3.1
4 [4], 4.3 5.1 4.3 5.1 4.3 3.1 4.3 · 4.3 · 4.3 ·
5 · [1], 6.4 · · · · [1] · · ·
6 · 3.1 · · · · · ·
7 6.3 3.5 · · · 3.1
8 4.1 · 4.3 3.1
9 · 3.1

• q = 5 and k ≡ 1 (mod 5) [1],

• q = k/2 and k = 6 or k − 1 is a Mersenne prime [4].

In this paper we extend this result considerably. All of our results are for arbitrary m.
Some families we show to be prime are the uniform cycle snakes Cm

k,q in the following
cases:

• q = 2 when k ≡ 3 (mod 4) (see Theorem 3.3),

• q = 2 when k has the form 2a + 2 or ta + tb + 1 for a, b ≥ 1 and t odd (see
Theorems 3.4, 4.2),

• q = 3 when k has the form 2t−1, 3a+1 or 3a+3 for a ≥ 1 (see Theorems 3.2, 4.4, 5.2),

• q = 4 when k is even (see Theorem 4.3),

• q = (k − 1)/2 when q is prime and q + 1 has exactly one odd prime factor (see
Theorems 2.1 and 6.4),

• q = k/2 when q is prime and q ≡ 1 (mod 3) (see Theorem 6.3).

There are many further constructions that are less general, are less concise to state, or are
focused on specific small cases. Table 1 shows what is covered for k ≤ 19 and 2 ≤ q ≤ 9,
including where to find the construction in the paper. Note that this includes prime
labelings for Cm

k,q for all q and m when k ≤ 9 or k = 11.
In the next section we give some efficient notation for labelings of cycle snakes and

introduce some tools that are used throughout the paper. The constructions add labels
one cycle at a time in a repeating pattern. The bulk of the paper, Sections 3–6, gives
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Figure 2: A non-prime non-uniform cycle snake.

these constructions and their corresponding results in increasing order of the period of
the repeating pattern.

Given the success finding prime labelings for uniform cycle snakes, we propose the
following conjecture.

Conjecture 1.2 For all m ≥ 1, k ≥ 3 and q with 1 ≤ q ≤ bk/2c, the uniform cycle
snake Cm

k,q is prime.

A natural more general conjecture that all cycle snakes, regardless of uniformity, are
prime is not true. To see this, consider the cycle snake with cycles of sizes 3, 4 and 3
respectively shown in Figure 2. There are 8 vertices, 4 of which must have even labels. No
pair of even labels may be adjacent in a prime labeling and it is easy to check that there
are no four mutually non-adjacent vertices in the graph (that is, there is no “independent
set” of size 4).

2 Notation and Tools

Describe a labeled snake by writing the labels for each cycle in turn by listing them in
the order they appear starting from adjacent to the fusion point to the previous cycle,
and separate the cycles with vertical lines. Mark the label on the fusion point to the next
cycle with a circumflex.

For example, here’s the labeling of C4
5,2 from Figure 1 in this new notation:

[1, 2, 3, 4, 5̂ | 6, 7̂, 8, 9 | 10, 1̂1, 12, 13 | 14, 17, 16, 15]

To check for the primality of a labeling in this notation, we need to compare the end
vertices of the first cycle list, compare all adjacencies within the list for each cycle, and
compare each label with a circumflex to the end vertices of the subsequent cycle list.
When checking for coprimality a frequently useful fact is that gcd(x, y) = gcd(x, y − x).

The following result, for one of the smallest open cases, illustrates several of the
methods we use through the course of the paper.
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Theorem 2.1 Every uniform cycle snake of the form Cm
5,2 is prime.

Proof. We add the labels one cycle at a time, and the pattern repeats every three cycles.
Initialize the process by labeling the first cycle | 1, 2, 3, 4, 5̂ |, where 5 is the vertex to be
used as the fusion point.

Suppose we have a prime labeling on a graph with 12x + 5 vertices. We may fuse a
5-cycle to the vertex labeled 12x+ 5 in such a way that a new vertex at distance 2 from
the fusion point has label 12x+ 7 using the pattern

| 12x+ 6, ̂12x+ 7, 12x+ 8, 12x+ 9 | .

All internal neighbors are consecutive. Where the cycle attaches to the previous one, we
have neighbors 12x+ 6, also consecutive, and 12x+ 9. We have gcd(12x+ 5, 12x+ 9) =
gcd(12x+ 5, 4) = 1.

Now suppose we have a prime labeling on a graph with 12x+ 9 vertices. We may fuse
a 5-cycle to the vertex labeled 12x+ 7 in such a way that a new vertex at distance 2 from
the fusion point has label 12x+ 11 using the pattern

| 12x+ 10, ̂12x+ 11, 12x+ 12, 12x+ 13 | .

All internal neighbors are consecutive. Where the cycle attaches to the previous one, we
have neighbors 12x+10 and 12x+13. We have gcd(12x+7, 12x+10) = gcd(12x+7, 3) = 1
and gcd(12x+ 7, 12x+ 13) = gcd(12x+ 7, 6) = 1.

Lastly, suppose we have a prime labeling on a graph with 12x+ 13 vertices. We may
fuse a 5-cycle to the vertex labeled 12x+ 11 in such a way that a new vertex at distance 2
from the fusion point has label 12x+ 17 using the pattern

| 12x+ 14, ̂12x+ 17, 12x+ 16, 12x+ 15 | .

There is one pair of non-consecutive internal vertices: 12x + 14 and 12x + 17. We have
gcd(12x+ 14, 12x+ 17) = gcd(12x+ 14, 3) = 1. Where the cycle attaches to the previous
one, we have neighbors 12x + 14 and 12x + 15. We have gcd(12x + 11, 12x + 14) =
gcd(12x+ 11, 3) = 1 and gcd(12x+ 11, 12x+ 15) = gcd(12x+ 11, 4) = 1.

To complete the proof, note that after the third pattern we have 12x+17 = 12(x+1)+5
vertices and may return to the first pattern. �

In this proof we wrote all labels in the form 12x + y. This allowed us to easily see
that the pattern repeated after three steps and, more importantly, let us ensure that the
non-consecutive adjacent labels used were indeed coprime.

In general, we shall use the number of new vertices added by the repeating pattern to
play the role of 12 and denote this by α. For any positive integer a, let ϑ(a) be the set
of prime divisors of a. We formalize how to quickly perform the coprimality checks we
require in the following lemma.

Lemma 2.2 Let α, y, z be positive integers with y < z. If

ϑ(z − y) ⊆ ϑ(α) and gcd(y, z) = 1

then gcd(αx+ y, αx+ z) = 1 for all x ≥ 0.
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Proof. Suppose p is prime and p | gcd(αx + y, αx + z). Since gcd(αx + y, αx + z) =
gcd(αx+ y, z − y) we have p | z − y. Therefore, p | α, as ϑ(z − y) ⊆ ϑ(α), and so p | αx.
As we also know that p | αx + y it must be that p | y; similarly p | z. This contradicts
that gcd(y, z) = 1, hence gcd(αx+ y, αx+ z) = 1. �

In light of this lemma, we can be more effficient in our proofs. Rather than displaying
each label as αx + y we shall just write y and obtain the true labeling by adding αx to
each element. This reduces the display of the three cycles of the proof of Theorem 2.1 to

| 6, 7̂, 8, 9 | 10, 1̂1, 12, 13 | 14, 1̂7, 16, 15 | .

As ϑ(12) = {2, 3}, the task of checking the necessary coprimalities reduces to ensuring
that when we have a pair of non-consective adjacent labels the labels are coprime and
their difference has no prime factors other than 2 or 3. The pairs to check here are

(5, 9), (7, 10), (7, 13), (14, 17), (11, 14), (11, 15),

where the (5, 9) comes from the assumption about how the first cycle is attached.
A graph with n vertices is r-coprime if it can be labeled with n consecutive integers

{r, r + 1, . . . , r + n − 1} in such a way that every pair of adjacent vertices has coprime
labels. Hence 1-coprimality is exactly the same as primality.

The following straightforward result is useful for some of our constructions.

Lemma 2.3 If a graph is 2-coprime then it is prime.

Proof. Let G be a 2-coprime graph with n vertices. Take a 2-coprime labeling of G
and replace the label n + 1 with 1. The labeling now uses the integers {1, 2 . . . , n}. All
adjacent pairs of vertices are coprime as either they are adjacent in the 2-coprime labeling
or one of them is 1, which is coprime with all other labels. �

3 Constructions with Period 1

We start with constructions with period 1; that is, those that use a single pattern repeated
on every cycle. In the notation of the last section, this means that when considering Cm

k,q

we use α = k − 1.
Theorem 3.1 covers eight specific (k, q) pairs (for all m in each case, meaning each

gives an infinite family of prime graphs) and then Theorems 3.2–3.5 give some infinite
families of (k, q) pairs (again for all m in each case).

Theorem 3.1 The uniform cycle snakes Cm
7,3, C

m
13,3, C

m
13,4, C

m
13,6, C

m
19,3, C

m
19,7, C

m
19,8 and

Cm
19,9 are prime for all m.

Proof. Consider Cm
7,3. Label the first cycle with 1, . . . , 7 in consecutive order and take

the vertex labeled 5 to be the fusion point. Let α = 6 and consider the pattern

| 8, 9, 10, 1̂1, 12, 13 | .
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